N-WASP is required for Amphiphysin-2/BIN1-dependent nuclear positioning and triad organization in skeletal muscle and is involved in the pathophysiology of centronuclear myopathy
نویسندگان
چکیده
Mutations in amphiphysin-2/BIN1, dynamin 2, and myotubularin are associated with centronuclear myopathy (CNM), a muscle disorder characterized by myofibers with atypical central nuclear positioning and abnormal triads. Mis-splicing of amphiphysin-2/BIN1 is also associated with myotonic dystrophy that shares histopathological hallmarks with CNM. How amphiphysin-2 orchestrates nuclear positioning and triad organization and how CNM-associated mutations lead to muscle dysfunction remains elusive. We find that N-WASP interacts with amphiphysin-2 in myofibers and that this interaction and N-WASP distribution are disrupted by amphiphysin-2 CNM mutations. We establish that N-WASP functions downstream of amphiphysin-2 to drive peripheral nuclear positioning and triad organization during myofiber formation. Peripheral nuclear positioning requires microtubule/Map7/Kif5b-dependent distribution of nuclei along the myofiber and is driven by actin and nesprins. In adult myofibers, N-WASP and amphiphysin-2 are only involved in the maintenance of triad organization but not in the maintenance of peripheral nuclear positioning. Importantly, we confirmed that N-WASP distribution is disrupted in CNM and myotonic dystrophy patients. Our results support a role for N-WASP in amphiphysin-2-dependent nuclear positioning and triad organization and in CNM and myotonic dystrophy pathophysiology.
منابع مشابه
Altered Splicing of the BIN1 Muscle-Specific Exon in Humans and Dogs with Highly Progressive Centronuclear Myopathy
Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accou...
متن کاملCase report of intrafamilial variability in autosomal recessive centronuclear myopathy associated to a novel BIN1 stop mutation
Centronuclear myopathies (CNM) describe a group of rare muscle diseases typically presenting an abnormal positioning of nuclei in muscle fibers. To date, three genes are known to be associated to a classical CNM phenotype. The X-linked neonatal form (XLCNM) is due to mutations in MTM1 and involves a severe and generalized muscle weakness at birth. The autosomal dominant form results from DNM2 m...
متن کاملThe myotubularin-amphiphysin 2 complex in membrane tubulation and centronuclear myopathies.
Myotubularin (MTM1) and amphiphysin 2 (BIN1) are two proteins mutated in different forms of centronuclear myopathy, but the functional and pathological relationship between these two proteins was unknown. Here, we identified MTM1 as a novel binding partner of BIN1, both in vitro and endogenously in skeletal muscle. Moreover, MTM1 enhances BIN1-mediated membrane tubulation, depending on binding ...
متن کاملMutations in BIN1 Associated with Centronuclear Myopathy Disrupt Membrane Remodeling by Affecting Protein Density and Oligomerization
The regulation of membrane shapes is central to many cellular phenomena. Bin/Amphiphysin/Rvs (BAR) domain-containing proteins are key players for membrane remodeling during endocytosis, cell migration, and endosomal sorting. BIN1, which contains an N-BAR domain, is assumed to be essential for biogenesis of plasma membrane invaginations (T-tubules) in muscle tissues. Three mutations, K35N, D151N...
متن کاملDisrupted Membrane Structure and Intracellular Ca2+ Signaling in Adult Skeletal Muscle with Acute Knockdown of Bin1
Efficient intracellular Ca²⁺ ([Ca²⁺]i) homeostasis in skeletal muscle requires intact triad junctional complexes comprised of t-tubule invaginations of plasma membrane and terminal cisternae of sarcoplasmic reticulum. Bin1 consists of a specialized BAR domain that is associated with t-tubule development in skeletal muscle and involved in tethering the dihydropyridine receptors (DHPR) to the t-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2014